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ON STABILITY OF SYSTEMS OF GYROSCOPIC STABILIZATION 

IN THE PRESENCE OF PERTURBATIONS* 

L. K KUZ'MINA 

Systemsofgyroscopic stabilization regarded here as the electromechanical systems, 
are considered, with some of the real properties of their elements taken into acc- 
ount. In /l/ the author dealt with the problem of stability of a steady motion of 
a system of gyroscopic stabilization under parametric perturbations. It is however 
important that the problem of stability when the pertrubations are continuous is 
also considered. Using the results of /l/, it can be assumed that small (in a well 
defined sense) perturbations acting over the electric generalized coordinates and 
over a part of the mechanical generalized coordinates, should not upset the stabil- 
ity (i.e. they are not significant). This assumption, which requires additional 
study, is proved in the present paper. 

1, We shall consider a system of gyroscopic stabilization using, as in /l/, an electro- 
mechanical system on a fixed support as its model. The differential equations of perturbed 
motion obtained in /l/ have, in the case of the present model, the form 

a. 
&aqn, -' v- g") s;, = QiI r Q;, -'- mM (1.1) 

$~~~'-tB'q,'= QE'+ QE~ + @E. dqM _ 
dt -- qu 

Here 0, = 'py (q&Y Pm', PE'? t) and 'D,= Q)E(qM,qni',qE',t) are, respectively, n-and u-dimensional vector 
functions characterizing constantly acting perturbations, and the remaining symbols are those 
used in /l/. We assume the functions @m and 'D, to be such, that a unique solution of (1.1) 
exists at every point of the region in question. 

The zero solution of the system (1.1) without perturbations determines a steady motion, 
and we shall study its stability. We shall further assume that the perturbations acting on 
the system lead to the appearance of perturbing forces only with respect to some of the vari- 
ables. Let us assume that the first m components of the vector QD,, areequaltozero, i.e. cD,,I 
=O. We shall call the system of differential equations (1.1) (under the assumptions made above 
about the vector CD,) the perturbed system, and a system of equations obtained from (1.1) when 
oM=O and CP,=O the unperturbed system and denote it by (1.1'). 

We introduce new variables by means of a nonsingular uniformly regular transformation /l/ 

z= a,q,+ (b,’ ~; g,“) qM, xl= an,, xz = L'&'> x3= q,, 

Equations (1.1) in new variables become 

.-_ Xl 

P= ( *= 10 ( R” = I I x0 
--~ 0 x4 

Here z and x are JR- and (Zn + u- m)-dimensional vectors z= px,, x = TX where B = II pkj (2, x) 1 and 

x4 = q, 

(1.2) 

y = Iv~~(z,x)II are the m x n and (Zn + u- m) x (2n + u - m) matrices respectively. The unperturbed 
system (1.1') will have, in the new variables, a corresponding system (1.2') obtained from 
(1.2) by setting O= 0. 

We shall call the variable x the basic and variable z the critical, and 
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consider the problem of stability of the null solution of the unperturbed system under const- 
antly acting perturbations with respect to some of the variables (with respect to the basic 
variable). We note that for the system in question a (Liapunov /2/J critical case of m zero 
roots exists. 

2, Let us make the assumption usually made in the course of solving the problems of stab- 
ility under constantly acting perturbations /3,4/, that the perturbations are small: (la,!(<r~ 
where p::- 0 is small. Then the following theorem holds. 

Theorem 1, If P in the system (1.2) is a stable matrix , then for any given E>O numbers 
rb and p greater than zero can be found such, that for any solution of the system (1.2) with 
initial conditions 

for all t>lO, the inequalities 
IZli<G iiXll<E 

will hold for any values of ~satisfying, in the region 

1 al I1 i I’ 

in question, the relations 

(2.1) 

Proof, Let E>O be given. Consider the solution of the equation 

dx/dt== Px-; X(t,r,(I),x)~' 'I,{t,g(rj,x) (2.2) 

obtained from the equation of the system (1.2) for the basic variable, by making the stistitu- 
tion z= &(t) where g(t) is an arbitrary continuous function with values belonging to the region 
in question. We also assume that 

jl F, (Q II< ‘1, IIX (fd it < '17 U<lj<:p_ 
[[6(Qlicc_:e, ~el&tJ 

The inequality {~(t)/<e continues to hold for the values of t near to for by virtue of the 
continuity. Let 11 x itI’) jj = E at some instant of time tl'-.- f, , and let 

\j X /j '_ l‘, (El E (2.31 

for i es [to, t,'l where fl -0 as E -* 0. We note that by virtue of the condition of the theorem, 
/j,J"/j -;. D@ where D and ft > (r are constants. In this caBe the following relation holds for 

any solution of (2.2) with initial conditions to and Q /5,6/z 

Using the relations (2.1), (2.3) and (2.41, we write the following estimate for 5 (tl’) : 
II x (h’) II < NJ + ml& 1 a -t m / a .~ 

Selecting qg~l(40),~y,/~gl/,,~p/a&~/4, we obtain 
Ij x @I’) 1 < “4 8 < 8 

which is a contradiction. Therefore /~x(~)/I<E for all t 
Let us now consider the equation 

dz/dl=l; 

for which U6(0ll<~. 

Integrating this equation and remembering that the right hand part in the old variables hasthe 
form 

where x (qM, qw’) is a nz x n matrix, we obtain 

/I 2 II f: II z, 1-t 1j.c x (q,v (% 9111’ WI d’lM it) 11 (2.5) 

Consider the solution of the perturbedfosystem (1.2) 
X = x (1), z = z (f) 

with initial conditions I/X (t,,)ll< q, llz (@Il<q, O<q <e. By virtue of the continuity, the inequal- 

ity II E 0) II < r will still hold for the instances of time t neat to. Let the following relation 
hold at some instant of time tl : 

II 2 (t*) I = 8 (2.6) 
In accordance with the previous arguments we have, for t = fkl, tel t 

ii x 6) II < e 
The following inequalities will hold for the above values of t by virtue of the variable trans- 
formation: 

i/Pg /! < E ii = f/d: iiSji! i El (e) ii = 2, 3): j/X// <Xl (El 

where e, and x1+ 0 as e -9 0. Keeping this in mind, we can use (2.5) to obtain the estimate 

11% (G II < t7 + x&e 
where Mis a constant independent of e. 

When n < e/3, x,M < 11; we have I\ z (t3 I/ < ‘V9 e < e, which contradicts the assumption (2.6). Thus 
if r Q min Is/ (40). s/31, P< aei(4D), then we have llzjl<~, llxI]<e for all f>le. 

3, Let the perturbations no longer be small, but be bounded functions satisfying the 
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conditions /7/ 

(3.1) 

for any fixed values X=X and a= Z. 

Theorem 2, If P is a stable matrix in the system (1.2), then for any given value of 

e>O numbers n and Z'O greater than zero can be found such, that for any solution of the syst- 

em (1.2) with initial conditions 

II 2 w II < % II = (kd II < 1 
the inequalities 

I'2 Ii < 8, II x II < 8 

will hold for all t > t0 and for any Q, satisfying the conditions (3.1), provided that T< T,. 

proof, Repeating the previous arguments, we obtain the estimate (2.4) for the solution 

of (2.2). Remembering that 

we obtain from (2.4), in the present case, 

II x (h’) Ii < W + Dy,e / (* + fry 
For q < e / (4D), Dy, / a < lid, T f E / (4R) , we have jlx (tl’) /) < 3i, e < 8 

Repeating the remaining arguments we find that of n<min (c/3, e/(40)], Tc To = E/ (4/o, then llx//< 

E, Ilzll<e for all t>t,. The theorem is proved. 

4, We note that under the conditions of the theorem the null solution of the unperturbed 

system (1.2') is stable, but not asymptotically stable /2/. The results obtained imply that 

perturbations acting constantly with respect to the basic variable (small perturbations or 

those satisfying the conditions (3.1)) do not affect this stability (in the sense of the state- 

ment of the theorem). 

Returning to the original variable, we obtain 

Theorem 3, If, apart from m zero roots, all remaining roots of the characteristic equa- 

tion of the first approximation to the unperturbed system (1.1') have negative real parts,then, 

for any arbitrarily small F)O, numbers ~1 and p (or n and To) exist such that for any solu- 

tion of the system (1.1) with initial conditions 

/I qJ[ (lo) 1: < tl2 Ii 9.,1 (to) II < rl! II (I,’ (to) II < ‘i 
and for all t>to, the inequalities 

IIq,,,,ll<a, ilPnr',l<e, Ij4E.li<F 
will hold for any mD,,,,8, satisfying the conditions of the type (2.1) (or 3.1). 

It follows therefore that perturbations of the type discussed above, acting constantly 

over some of the generalized coordinates (over the mechanical coordinates q, and q, and the 

electrical coordinates q,J do not affect the stability of the steady motion of the system of 

gyroscopic stabilization. 

Note, It follows that for the model of the system of gyroscopic stabilization consider- 

ed above, small or high frequency periodic perturbations acting, e.g. along the stabilization 

axes and in electric circuits, are insignificant from the point of view of their effect on the 

stability of the steady motion. The result remains valid in particular cases when the electric 

circuits of the servo systems are assumed inertialess and when the characteristic kinetic mom- 

ents of the gyroscope are constant. 

The results obtained imply, in particular, that for the mathematical model of the gyro- 

stabilizer used here and in the cases when the amplitudes of the harmonic perturbing moments 

are small or their frequencies high, all generalized velocities qn; and qr' and the mechanical 

generalized coordinates q,,l remain small during the whole period of motion of the system. 
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